top of page

17

C/C++ Program for DFA based division.

program solution

#include <stdio.h>

#include <stdlib.h>

  

// Function to build DFA for divisor k

void preprocess(int k, int Table[][2])

{

    int trans0, trans1;

  

    // The following loop calculates the two transitions for each state, starting from state 0

    for (int state=0; state<k; ++state)

    {

        // Calculate next state for bit 0

        trans0 = state<<1;

        Table[state][0] = (trans0 < k)? trans0: trans0-k;

  

        // Calculate next state for bit 1

        trans1 = (state<<1) + 1;

        Table[state][1] = (trans1 < k)? trans1: trans1-k;

    }

}

  

/* A recursive utility function that takes a 'num' and DFA (transition table) as input and process 'num' bit by bit over DFA*/

void isDivisibleUtil(int num, int* state, int Table[][2])

{

    // process "num" bit by bit from MSB to LSB

    if (num != 0)

    {

        isDivisibleUtil(num>>1, state, Table);

        *state = Table[*state][num&1];

    }

}

  

// The main function that divides 'num' by k and returns the remainder

int isDivisible (int num, int k)

{

    // Allocate memory for transition table. The table will have k*2 entries

    int (*Table)[2] = (int (*)[2])malloc(k*sizeof(*Table));

  

    // Fill the transition table

    preprocess(k, Table);

  

    // Process ‘num’ over DFA and get the remainder

    int state = 0;

    isDivisibleUtil(num, &state, Table);

  

    // Note that the final value of state is the remainder

    return state;

}

  

// Driver program to test above functions

int main()

{

    int num = 47; // Number to be divided

    int k = 5; // Divisor

  

    int remainder = isDivisible (num, k);

  

    if (remainder == 0)

        printf("Divisible\n");

    else

        printf("Not Divisible: Remainder is %d\n", remainder);

  

    return 0;

}

Output

Not Divisible: Remainder is 2

bottom of page